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Scientific progress and accomplishments 

Abstract: 

The focus of our effort has been to develop quantum information processing technologies based 
on a solid-state cavity QED platform consisting of quantum dots in photonic crystals. The main 
goals that we have accomplished include:  

1. Study of the ultrafast dynamics of the quantum dot-cavity QED system [Majumdar et al., 
Phys. Rev. A, 2012], and ultrafast switching between two single photon pulses mediated 
by the quantum dot-photonic crystal cavity QED system [Englund et al., Phys. Rev. 
Letters, 2012] 

2. Probing the ladder of dressed states in the solid state cavity QED system [Majumdar et al, 
Physical Review A, 2012] 

3. Study of the off-resonant quantum dot-cavity coupling in solid-state cavity QED system, 
and the phonon mediated off-resonant interaction between two quantum dots [Majumdar 
et al., Physical Review B , 2012] 

4. Coherent optical spectroscopy of a single quantum dot via an off-Resonant cavity - much 
simpler than in conventional approaches [Majumdar et al, Physical Review B, 2011; 
Papageorge et al., New. Journal of Physics, 2011] – described in the previous interim 
report 

5. Study of the cavity QED with a quantum dot coupled to a photonic molecule [Majumdar 
et al., Phys. Rev. B, 2012] 

6. Study of the effect of photo-generated carriers on the spectral diffusion of a quantum dot 
coupled to a photonic crystal cavity [Majumdar et al., Physical Review B, 2011] 

 

 The platform we use in our experiments consists of InAs quantum dots (QDs) embedded 
in GaAs photonic crystal (PC) circuits. The QD material is grown by our collaborators at UCSB 
(Pierre Petroff) and PCs are fabricated by our group in the Stanford Nanofabrication Facility 
(SNF).  

 The detailed descriptions of these achievements follow. 
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1.  Ultrafast dynamics of the QD-cavity QED system  

We have performed theoretical and experimental studies of the ultrafast dynamics of the 
quantum dot –photonic crystal cavity system [1]. We derived simplified linear and nonlinear 
semi-classical models that approximate well the system’s behavior in the limits of high- and low-
power driving pulses and describe the role of quantum coherence in the exact dynamics of the 
system. We also present time-resolved transmission measurements showing the dynamics of a 
quantum-dot–cavity system in the presence of a short laser pulse. 

 

 
Fig. 1.1 (a) Schematic of the coupled QD- cavity system. It is driven by a laser pulse, and the cavity 
output is monitored. (b) The cavity transmission calculated by three different models: the quantum optical 
(red), semiclassical linear (blue) and nonlinear (black) model at low peak intensity of the driving pulse. 
All three models match quite well. The input pulse is also shown (green dashed line). The oscillation in 
the cavity output is due to Rabi oscillation of the photon between the QD and the cavity. The inset shows 
the cavity transmission spectrum in the presence and in the absence of the strongly coupled QD. The split 
resonances are separated approximately by twice the coherent dot-cavity interaction strength g. The 
spectral shape of laser pulses with pulse lengths of 5 ps (blue dashed line) and 40 ps (green dashed line) is 
also shown. The temporal cavity output obtained from the full quantum optical simulation as a function of 
(c) the dot-cavity coupling strength g, (d) the cavity field decay rate κ, (e) the dot cavity detuning δ, and 
(f) the pure QD dephasing rate γd. (g–i) Experimentally measured time-resolved transmission of 40-ps 
pulses through a strongly coupled dot-cavity system for three different powers (averaged over the pulse 
repetition period). 

 

 As described in the previous report, this ultrafast dynamics has been employed to 
demonstrate ultrafast all-optical switching at the single photon level, as shown in the Fig. 1.2 
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Figure 1.2 Interaction of two weak laser pulses through the QD/cavity system. (a) Time-delay setup for 
producing pulses at a separation of ∆t. (b) Simulated interaction of two laser pulses, represented by the 
instantaneous intracavity photon number ⟨a†a⟩ as a function of the time delay ∆t between the two 40 ps 
long Gaussian pulses. Curves are calculated for a set of different rates of pure QD dephasing, γd, which 
causes a reduction of the transmission dips before and after the peak. Pure dephasing also causes a 
blurring of the spectral normal mode splitting, which in turn raises the transmission for increasing γd. (c) 
Pump-power dependence of the cavity transmission for coincident pulses repeating at 80 MHz. (d) Signal 
observed when the cavity-QD system is probed with two 40 ps pulses as a function of their delay. When 
the two pulses have a temporal overlap inside the cavity, the QD saturates and the overall cavity reflection 
increases. The power in the single of the two pulses corresponds roughly to the 3.4nW trace in (c). Best 
agreement is found with the theoretical plot for a pure dephasing rate γd/2π ∼ 5 GHz. 

 

 

2. Probing the ladder of dressed states in the solid state cavity QED system 

 

We have probed the 2nd manifold of the ladder of dressed states of the strongly coupled QD-
cavity system [2]. Our investigation focused on the photon-induced tunneling phenomena in a 
photonic crystal cavity containing a strongly coupled quantum dot. We also theoretically 
explored how this tunneling can be used to generate photon states consisting mainly of a 
particular Fock state. 

When a cavity mode is strongly coupled to a two-level quantum emitter such as a quantum dot 
(QD) (Fig 2.1a), the energy structure of the coupled system becomes anharmonic (Fig. 2.1b). 
Nonclassical correlations between photons transmitted through the cavity can result from such 
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anharmonicity, which in turn leads to fundamental phenomena of photon blockade and photon-
induced tunneling [3].  

Signatures of the photon blockade and tunneling can be detected through photon-statistics 
measurements, such as the second-order coherence function at time delay zero g(2)(0) = 
⟨a†a†aa⟩/⟨a†a⟩2. g(2)(0) is less (greater) than 1 in the photon blockade (tunneling) regime, 
signifying the presence of single (multiple) photons in the light coming out of the coupled QD 
cavity system. g(2)(0) can be experimentally measured by the Hanbury-Brown and Twiss (HBT) 
setup, where coincidences between the photons are detected [3]. Another important statistical 
quantity is the nth order differential correlation function C(n)(0) = ⟨a†nan⟩ − ⟨a†a⟩n, which provides 
a clearer measure of the probability to create n photons at once in the cavity [4]. The second-
order differential correlation function can also be expressed as C(2)(0) = [g(2)(0) − 1]n2

c , where 
nc= ⟨a†a⟩ is the average intracavity photon number. Particularly for a weakly driven system 
(nc≪1), C (2) (0) becomes positive only when the probability of the two-photon state becomes 
significant compared to that of a single-photon state, while a peak in C(2)(0) indicates the 
maximum probability of a two-photon state inside the cavity. As the driving power increases, the 
peak in C(2)(0) shifts toward empty cavity resonance as one starts populating the higher-order 
manifolds. 

We obtain the values of the second-order differential correlation function C(2)(0) for the coupled-
QD cavity system as a function of the laser-cavity detuning by multiplying the second-order 
coherence function by the normalized value of the system’s transmission at a given detuning (Fig 
2.1c) . We observe the transition of C(2)(0) from negative to positive values. Simulations with our 
system parameters are shown by the dashed line in Fig. 2.1c and the onset of a peak at Δc ∼ 0.5g, 
corresponding to the excitation of the higher-order dressed states, is observed. The absence of 
such a clear peak in the experimental data can be ascribed to QD blinking. The peak in C(2)(0) 
does not correspond exactly to the resonant excitation of the second-order manifold via the two-
photon process because of the additional excitation of the higher-order manifolds. 

 

 

Fig 2.1: (a) Schematic of the coupled QD-cavity system driven by a Gaussian pulse (coherent state |α〉). 
The transmitted light through the cavity is nonclassical (|ψ〉) due to the nonlinearity provided by the 
strongly coupled QD-cavity system. (b) The anharmonic Jaynes-Cummings ladder structure. (c) 
Normalized differential correlation function C(2)(0) as a function of the laser detuning. The dashed red 
line shows the result of a numerical simulation based on the system’s experimental parameters.  
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3. Phonon mediated off-resonant interaction between two quantum dots in a cavity   

 

We have demonstrated phonon-mediated coupling between two quantum dots embedded inside a 
photonic-crystal microcavity, for both weak and strong regimes of dot-cavity coupling. Phonon-
mediated coupling between a self-assembled semiconductor quantum dot (QD) and a 
semiconductor microcavity is a recently discovered phenomenon unique to solid-state cavity 
quantum electrodynamics (cQED). This phenomenon has been observed both in 
photoluminescence studies under above-band pumping [5–9] and under resonant excitation of 
the QD [10,11]. To isolate the role of phonons in off-resonant QD-cavity coupling, studies 
employing resonant excitation of the QD are preferable as they avoid possible complications 
arising from multiexcitonic complexes and nearby charges generated via above-band pumping 
[12,13].  

 

 
Figure 3.1 Experimental demonstration of the phonon-mediated inter-dot coupling. We observe the 
emission from the lower-energy QD1 when the higher-energy QD2 is resonantly excited (blue). Similarly, 
under resonant excitation of the lower energy QD1, emission from the higher-energy QD2 is observed 
(red). Natural log of the count from the spectrometer CCD is plotted. The inset zooms into the QD 
emission (the actual spectrometer CCD counts are plotted). QD linewidths are estimated by fitting 
Lorentzians. Measured linewidths of the higher- and lower-energy QDs, respectively, are ∼0.03 nm and 
∼0.013 nm. The cavity is at ∼935 nm, close to the higher-energy QD2. 

 

However, all phonon-assisted off-resonant interaction experiments reported previously in the 
literature were based on a single QD and a cavity. Recently, an experimental study of two 
spatially separated QDs interacting resonantly in a microcavity has been reported [14] as well as 
a theoretical analysis [15–19] of the possible energy-transfer mechanisms between QDs in such a 
cavity. The interaction between two spectrally detuned QDs via a photonic-crystal cavity has 
also been demonstrated recently under p-shell QD excitation [20]. However, the actual coupling 
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mechanism between two QDs was not conclusively proven in that experiment as the presence of 
a higher-energy pumping laser can create charges and multiexcitons, making the system more 
complex. 

In our work, we show that under resonant excitation (of one of the dots), two spectrally far-
detuned QDs can interact with each other via an off-resonant cavity. More specifically, we 
observe emission from a spectrally detuned QD when another QD is resonantly excited (as 
shown in Fig. 3.1). Both frequency down-conversion (energy transfer from a higher-energy QD 
to a lower-energy QD) and up-conversion (energy transfer from a lower-energy QD to a higher-
energy QD) are observed for a frequency separation of up to ∼±1.2 THz. Such a large energy 
difference cannot be ascribed to an excited state of the same QD as opposed to conclusions 
reached in an earlier work by Flagg et al. [21], which was performed without a cavity and for a 
frequency difference of ∼±0.2 THz. Based on our observations, we believe this phonon-mediated 
process occurs between two different QDs, and the coupling between the QDs is enhanced by the 
presence of the cavity. Indeed, our results indicate that without a cavity spectrally close to one of 
the QDs, this process does not occur. 

 
 
4.  Cavity QED with a quantum dot coupled to a photonic molecule  

 

Solid-state cavity QED systems consisting of a single quantum dot (QD) coupled to a photonic 
crystal cavity are of considerable interest to the quantum optics community for the generation of 
nonclassical states of light [3,22], for their application to all-optical [23,24] and electro-optical 
switching [25], and due to unusual effects like the off-resonant dot-cavity interaction due to 
electron-phonon coupling [10]. However, all of the cQED effects previously demonstrated in this 
system involve a single cavity. Although numerous theoretical proposals employing multiple 
cavities coupled to single quantum emitters exist in the cQED and circuit-QED literature [26–29] 
experimental development in this direction is rather limited. Most of these proposals, for 
example, observing the quantum phase transition of light, require a nonlinearity in each cavity, 
which is a formidable task with current technology. However, several proposals involving a 
single QD coupled to multiple cavities predict novel quantum phenomena, for example, the 
generation of bound photon-atom states [30] or sub-Poissonian light generation in a pair of 
coupled cavities or in a photonic molecule containing a single QD [31, 32]. This photonic 
molecule, coupled to a single QD, forms the first step toward building an integrated cavity 
network with coupled QDs.  

We have demonstrated the effects of cavity quantum electrodynamics for a quantum dot coupled 
to a photonic molecule consisting of a pair of coupled photonic crystal cavities. In order to 
investigate the strong coupling between a single QD and the photonic molecule in PL, we used a 
photonic molecule consisting of cavities separated by four holes along the 60° angle. In practice 
it is not trivial to tune the QD over such a long wavelength range as required by the observed 
separation of the two cavity peaks. Hence, we use two different tuning techniques: we tune the 
cavity modes by depositing nitrogen on the cavity [33], and then tune the QD resonance across 
the cavity resonance by changing the temperature of the system. As shown in Fig. 4.1, we 
observe clear anticrossings between the QD and two supermodes formed in the photonic 
molecule, signifying achievement of the strong coupling regime. In general, the exact coupling 
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strength between two cavities in a photonic molecule is difficult to calculate, as the observed 
separation between the two modes has contributions both from the cavity coupling strength as 
well as from the mismatch between the two cavities due to fabrication imperfections. However, 
by monitoring the interaction between a single QD and the photonic molecule we can exactly 
calculate the coupling strength between the cavities and separate the contribution of the bare 
detuning due to cavity mismatch. In fact, without any coupling between two cavities, one cannot 
have strong coupling of the QD with both of the observed modes. Hence, the observed 
anticrossing of the QD with both modes clearly indicates coupling between the cavities. 

 
Figure 4.1 Normalized PL intensity plotted when we tune the QD across the cavity resonance by 
temperature: (a) before nitrogen deposition (i.e., the QD is temperature tuned across the longer 
wavelength resonance) and (b) after nitrogen deposition (which red-shifts the cavity resonances and 
allows us to temperature tune the QD across the shorter wavelength resonance). Clear anticrossings 
between the QD and the cavity are observed for both supermodes. In both cases, the temperature is 
increased from bottom to top (the plots are vertically offset for clarity). In the inset the resonances of the 
two anticrossing peaks (as extracted from curve fitting) are plotted. Clear anticrossing is observed in both 
cases. 

 

We then perform curve fitting for the PL spectra when the QD is resonant to the cavity super-
modes and estimate the system parameters [Figs. 4.2(a) and 4.2(b)]. Using the extracted values, 
we can numerically simulate the performance of such a QD-photonic molecule for generation of 
sub-Poissonian light using the quantum optical master equation approach [34]. The numerically 
simulated empty-cavity transmission and g2(0) of the transmitted light is shown in Figs. 4.2(c) 
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and 4.2(d). From these simulated data, we observe that with our system parameters we should be 
able to achieve strongly sub-Poissonian light with g2(0) ∼ 0.03. Unfortunately, in practice it is 
very difficult to drive only one cavity mode without affecting the other mode due to the spatial 
proximity of two cavities. This individual addressability is critical for good performance of the 
system [32] and to retain such a capability in a photonic molecule the cavities should be coupled 
via a waveguide [35]. 

 
Figure 4.2 QD-photonic molecule spectrum: (a) when the QD is resonant with the longer-wavelength 
super-mode and (b) when the QD is resonant with the shorter-wavelength supermode. From the fit we 
extract the system parameters. Numerically simulated (c) second-order autocorrelation g2(0) and (d) 
transmission from the empty cavity, as a function of laser frequency, with the experimental system 
parameters that were extracted from the fits. 

 

Finally, as a further demonstration of cQED effects in this system, we have demonstrated off-
resonant interaction between the coupled cavities and the QD, similar to the observations in a 
single linear three-hole defect cavity [36] and a nanobeam cavity [37]. 

 

5.  The effect of photo-generated carriers on the spectral diffusion of a quantum dot 
coupled to a photonic crystal cavity  

 

We experimentally observed the effect of photogenerated carriers on the spectral diffusion of a 
quantum dot (QD) coupled to a photonic crystal (PC) cavity [38]. In this system, spectral 
diffusion arises in part from charge fluctuations on the etched surfaces of the PC. We find that 
these fluctuations may be suppressed by photogenerated carriers, leading to a reduction of the 
measured QD linewidth by a factor of ∼2 compared to the case where the photogenerated 
carriers are not present. This result demonstrates a possible means of countering the effects of 
spectral diffusion in QD-PC cavity systems and thus may be useful for quantum information 
applications where narrow QD linewidths are desired. 
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We measure the QD linewidth by measuring the off-resonant cavity emission, while scanning the 
laser across the QD. We find a rather broad QD linewidth, in comparison to QD linewidths 
measured by resonant QD spectroscopies. A strong narrowing of the QD linewidth is observed 
when a little above-band laser is present (see Fig. 5.1). The new QD linewidth is of similar order 
of magnitude of the QD linewidths measured before. The broadening of the QD is most likely 
caused by the spectral diffusion due to random charging and uncharging of the states present at 
the etched surfaces. However, in presence of the AB laser charges are created. These charges can 
satisfy the states at the etched surfaces, and thus reduces the random charging and discharging, 
which in turn reduces the spectral diffusion. 
 
 

 
Figure 5.1: Effect of the above-band (AB) laser on the QD spectrum as measured though off-resonant 
cavity emission. In the absence of the AB laser, we observe a broad QD linewidth. However, in the 
presence of this laser, a significant linewidth narrowing is observed. The increased background with the 
AB laser on is caused by the PL generated by the AB laser. The inset shows the QD linewidth measured 
as a function of the AB laser power. 
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